标题:请问运行完这个程序大概需要花多长时间?
只看楼主
acone
Rank: 1
等 级:新手上路
帖 子:28
专家分:0
注 册:2007-8-25
结帖率:20%
已结贴  问题点数:10 回复次数:3 
请问运行完这个程序大概需要花多长时间?
本人准备学习python和机器学习,刚刚搭建好环境,从书上抄了一段程序试验一下,无奈运行了一天还没出结果。CPU占用率一直接近100%。请各位帮忙看一下是我的程序有问题呢还是真的没运行完?大概需要多少时间?我的配置是E5-2650,8核16线程,主频好像是2.0G,8G内存。
搜索更多相关主题的帖子: 运行 时间 学习 多少 配置 
2018-05-22 14:00
acone
Rank: 1
等 级:新手上路
帖 子:28
专家分:0
注 册:2007-8-25
得分:0 
程序如下:
# Load libraries
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import validation_curve

# Load data
digits = load_digits()

# Create feature matrix and target vector
features, target = digits.data, digits.target

# Create range of values for parameter
#param_range = np.arange(1, 250, 2)
param_range = np.arange(1, 250, 25)

# Calculate accuracy on training and test set using range of parameter values
train_scores, test_scores = validation_curve(
    # Classifier
    RandomForestClassifier(),
    # Feature matrix
    features,
    # Target vector
    target,
    # Hyperparameter to examine
    param_name="n_estimators",
    # Range of hyperparameter's values
    param_range=param_range,
    # Number of folds
    cv=3,
    # Performance metric
    scoring="accuracy",
    # Use all computer cores
    n_jobs=-1)

# Calculate mean and standard deviation for training set scores
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)

# Calculate mean and standard deviation for test set scores
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)

# Plot mean accuracy scores for training and test sets
plt.plot(param_range, train_mean, label="Training score", color="black")
plt.plot(param_range, test_mean, label="Cross-validation score",
color="dimgrey")

# Plot accurancy bands for training and test sets
plt.fill_between(param_range, train_mean - train_std,
                 train_mean + train_std, color="gray")
plt.fill_between(param_range, test_mean - test_std,
                 test_mean + test_std, color="gainsboro")

# Create plot
plt.title("Validation Curve With Random Forest")
plt.xlabel("Number Of Trees")
plt.ylabel("Accuracy Score")
plt.tight_layout()

plt.legend(loc="best")
plt.show()
2018-05-22 14:02
Amino_acids
Rank: 2
等 级:论坛游民
帖 子:1
专家分:10
注 册:2018-5-27
得分:10 
我运行了一下~报错
2018-05-27 22:04
星系隐
Rank: 2
等 级:论坛游民
威 望:1
帖 子:96
专家分:36
注 册:2018-6-16
得分:0 
报错加1
2018-07-05 21:20



参与讨论请移步原网站贴子:https://bbs.bccn.net/thread-487142-1-1.html




关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.577662 second(s), 7 queries.
Copyright©2004-2025, BCCN.NET, All Rights Reserved