标题:VC++:无限细半波振子的辐射阻抗(感应电动势法)
只看楼主
yu_hua
Rank: 2
等 级:论坛游民
帖 子:222
专家分:95
注 册:2006-8-10
结帖率:71.43%
已结贴  问题点数:20 回复次数:2 
VC++:无限细半波振子的辐射阻抗(感应电动势法)
//无限细半波振子间的互阻抗(经典结果)
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
#define EPS 1E-7 //正(余)弦积分的误差界
const double L = 0.5; //半波振子全长
const double M_PI =3.14159265358979324;
const double TPI  =2 * M_PI;
const double Euler=0.57721566490153286; //欧拉常数

double Si(double x) //这是所谓正弦积分
{
    double Si;
    if(fabs(x)<=15)
    {  //以下为泰勒展开
       double ai=3,x2=x*x,sgn,t;
       sgn=(x<0?1:-1);
       t=x2*x/18;
       Si=x-t;
       while(fabs(t)>EPS)
       {
       ai+=2;
       t*=x2/((ai-1)*ai*ai)*(ai-2);
       sgn=-sgn;
       Si+=sgn*t;
       }
    }
    else
    {  //以下为渐近展开
       double x1=1/x,x2=x*x,c,s,ai=0,sgn=1,sii,sij,t;
       c=cos(x)*x1;
       s=sin(x)*x1;
       sii=t=c;
       while(fabs(t)>EPS)
       {
       ai+=2;
       t*=ai*(ai-1)/x2;
       sgn=-sgn;
       sii+=sgn*t;
       }
       ai=sgn=1;
       if(x<0)sgn=-1;
       sij=t=s*x1;
       while(fabs(t)>EPS)
       {
       ai+=2;
       t*=ai*(ai-1)/x2;
       sgn=-sgn;
       sij+=sgn*t;
       }
       Si=M_PI/2-sii-sij;
    }
    return Si;
}

double Ci(double x) //这是所谓余弦积分
{
    double Ci;
    if(fabs(x)<=15)
    {
       double ai=2,x2,sgn=-1,t;
       x2=x*x;
       t=x2/4;
       Ci=Euler+log(fabs(x))-t;
       while(fabs(t)>EPS)
       {
       ai+=2;
       t*=x2/((ai-1)*ai*ai)*(ai-2);
       sgn=-sgn;
       Ci+=sgn*t;
       }
    }
    else
    {
       double x1=1/x,x2=x*x,c,s,ai=0,sgn=1,cii,cij,t;
       c=cos(x)*x1;
       s=sin(x)*x1;
       cii=t=s;
       while(fabs(t)>EPS)
       {
       ai+=2;
       t*=ai*(ai-1)/x2;
       sgn=-sgn;
       cii+=sgn*t;
       }
       ai=sgn=1;
       if(x<0)sgn=-1;
       cij=t=c*x1;
       while(fabs(t)>EPS)
       {
       ai+=2;
       t*=ai*(ai-1)/x2;
       sgn=-sgn;
       cij+=sgn*t;
       }
       Ci=cii-cij;
    }
    return Ci;
}

double f(double x,double y)
{
    return TPI*(y+sqrt(x*x+y*y));
}

int main(void)
{
    double R12,X12,w0,m0,w1,m1,w2,m2,w_1,m_1,w_2,m_2;
    double d,H,Bd,BH,BL=TPI*L;
  begin:
    cout<< "d=? H=?" <<endl;
    cin >> d >> H ;
    if(d<0)d=-d;
    if(H<0)H=-H;
  //以上,d和H分别是两振子间的平行距离和纵向距离(纵向错开),以波长为单位。
  //L为振子全长,对于半波振子L=0.5(波长)。无限细半波振子的自辐射阻抗为
  //73.1+j42.5Ω,就是在参数 d 和 H 均趋于零情况下的极限。
    if(!d && H && H<L)
    {
       cout << "积分发散" << endl;
       return -1;
    }
    Bd=TPI*d;
    BH=TPI*H;
    w0=f(d, (H    ));
    w1=f(d, (H+L/2));
    w2=f(d, (H+L  ));
    w_1=f(d,(H-L/2));
    w_2=f(d,(H-L  ));
    m0=f(d,-(H    ));
    m1=f(d,-(H+L/2));
    m2=f(d,-(H+L  ));
    m_1=f(d,-(H-L/2));
    m_2=f(d,-(H-L  ));
    if(d==0 && H==0 && L==0.5)//求半波振子的自辐射阻抗(欧)
    {
       R12=30*(-Ci(TPI)+Euler+log(TPI));
       X12=30*(Si(TPI));
    }
    else if(d==0 && H==L && L==0.5)//准全波振子
    {
       R12= 15*cos( BH  )*(3*Ci(w0)-2*Ci(w1)+2*log(fabs(1-L*L/(4*H*H)))-(log(BL/2)+Euler))
           +15*cos(BH+BL)*(Ci(w2)-2*Ci(w1)+Ci(w0)+log(fabs(pow(1+L/H/2,2)/(1+L/H))));
       X12=-30*cos( BH  )*(-Si(w_1)+2*Si(w0)-Si(w1))-15*cos(BH-BL)*(Si(w_2)-2*Si(w_1)+Si(w0))
           -15*cos(BH+BL)*(Si(w2)-2*Si(w1)+Si(w0));
    }
    else if(d==0 && H>L && L==0.5)//共线半波振子
    {
       R12= 15*cos( BH )*(3*Ci(w0)-2*Ci(w1)+2*log(fabs(1-pow(L/H/2,2)))
                          -Ci(w_2)-log(fabs(pow(1-L/H/2,2)/(1-L/H))))
           +30*sin( BH  )*(-Si(w_1)+2*Si(w0)-Si(w1))
           +15*sin(BH-BL)*(Si(w_2)-2*Si(w_1)+Si(w0))
           +15*cos(BH+BL)*(Ci(w2 )-2*Ci(w1 )+Ci(w0) +log(fabs(pow(1+L/H/2,2)/(1+L/H))))
           +15*sin(BH+BL)*(Si(w2 )-2*Si(w1 )+Si(w0));
       X12=-30*cos( BH  )*(-Si(w_1)+2*Si(w0)-Si(w1))
           +30*sin( BH  )*(-Ci(w_1)+2*Ci(w0)-Ci(w1) -log(fabs(1-pow(L/H/2,2))))
           -15*cos(BH-BL)*(Si(w_2)-2*Si(w_1)+Si(w0))
           +15*sin(BH-BL)*(Ci(w_2)-2*Ci(w_1)+Ci(w0) -log(fabs(pow(1-L/H/2,2)/(1-L/H))))
           -15*cos(BH+BL)*(Si(w2 )-2*Si(w1 )+Si(w0))
           +15*sin(BH+BL)*(Ci(w2 )-2*Ci(w1 )+Ci(w0) -log(fabs(pow(1+L/H/2,2)/(1+L/H))));
    }
    else if(d==0 && H>L)//共线对称振子
    {
       R12= 30*cos( BH  )*(-Ci(w_1)+2*Ci(w0)-Ci(w1) +log(fabs(1-pow(L/H/2,2))))
           +30*sin( BH  )*(-Si(w_1)+2*Si(w0)-Si(w1))
           +15*cos(BH-BL)*(Ci(w_2)-2*Ci(w_1)+Ci(w0) +log(fabs(pow(1-L/H/2,2)/(1-L/H))))
           +15*sin(BH-BL)*(Si(w_2)-2*Si(w_1)+Si(w0))
           +15*cos(BH+BL)*(Ci(w2 )-2*Ci(w1 )+Ci(w0) +log(fabs(pow(1+L/H/2,2)/(1+L/H))))
           +15*sin(BH+BL)*(Si(w2 )-2*Si(w1 )+Si(w0));
       X12=-30*cos( BH  )*(-Si(w_1)+2*Si(w0)-Si(w1))
           +30*sin( BH  )*(-Ci(w_1)+2*Ci(w0)-Ci(w1) -log(fabs(1-pow(L/H/2,2))))
           -15*cos(BH-BL)*(Si(w_2)-2*Si(w_1)+Si(w0))
           +15*sin(BH-BL)*(Ci(w_2)-2*Ci(w_1)+Ci(w0) -log(fabs(pow(1-L/H/2,2)/(1-L/H))))
           -15*cos(BH+BL)*(Si(w2 )-2*Si(w1 )+Si(w0))
           +15*sin(BH+BL)*(Ci(w2 )-2*Ci(w1 )+Ci(w0) -log(fabs(pow(1+L/H/2,2)/(1+L/H))));
    }
    else
    {
       R12= 30*cos( BH  )*(-Ci(w_1)-Ci(m_1)+2*Ci(w0)+2*Ci(m0)-Ci(w1)-Ci(m1))
           +30*sin( BH  )*(-Si(w_1)+Si(m_1)+2*Si(w0)-2*Si(m0)-Si(w1)+Si(m1))
           +15*cos(BH-BL)*(Ci(w_2)+Ci(m_2)-2*Ci(w_1)-2*Ci(m_1)+Ci(w0)+Ci(m0))
           +15*sin(BH-BL)*(Si(w_2)-Si(m_2)-2*Si(w_1)+2*Si(m_1)+Si(w0)-Si(m0))
           +15*cos(BH+BL)*(Ci(w2)+Ci(m2)-2*Ci(w1)-2*Ci(m1)+Ci(w0)+Ci(m0))
           +15*sin(BH+BL)*(Si(w2)-Si(m2)-2*Si(w1)+2*Si(m1)+Si(w0)-Si(m0));
       X12=-30*cos( BH  )*(-Si(w_1)-Si(m_1)+2*Si(w0)+2*Si(m0)-Si(w1)-Si(m1))
           +30*sin( BH  )*(-Ci(w_1)+Ci(m_1)+2*Ci(w0)-2*Ci(m0)-Ci(w1)+Ci(m1))
           -15*cos(BH-BL)*(Si(w_2)+Si(m_2)-2*Si(w_1)-2*Si(m_1)+Si(w0)+Si(m0))
           +15*sin(BH-BL)*(Ci(w_2)-Ci(m_2)-2*Ci(w_1)+2*Ci(m_1)+Ci(w0)-Ci(m0))
           -15*cos(BH+BL)*(Si(w2)+Si(m2)-2*Si(w1)-2*Si(m1)+Si(w0)+Si(m0))
           +15*sin(BH+BL)*(Ci(w2)-Ci(m2)-2*Ci(w1)+2*Ci(m1)+Ci(w0)-Ci(m0));
    }
    if(X12<0)
    {
       cout << "Z12 = ("<< R12 << "-j" << -X12 << ")欧" << endl;
    }
    else
    {
       cout << "Z12 = ("<< R12 << "+j" << +X12 << ")欧" << endl;
    }
    goto begin;
    return 0;
}

[ 本帖最后由 yu_hua 于 2010-10-24 15:03 编辑 ]
搜索更多相关主题的帖子: double include 经典 
2010-10-24 14:43
zghnxzdcx
Rank: 9Rank: 9Rank: 9
等 级:蜘蛛侠
威 望:4
帖 子:550
专家分:1176
注 册:2010-4-6
得分:20 
好雅兴

你永远不可能战胜一个纯傻子,因为他会把你的智商拉到和他同一个水平,然后用他的丰富经验打败你。
2010-10-24 14:48
yu_hua
Rank: 2
等 级:论坛游民
帖 子:222
专家分:95
注 册:2006-8-10
得分:0 
这是为某校“电波传播与天线”课程准备的,因为那本教材缺少一些辐射阻抗数据,导致有些习题同学无法完成,所以调试并发表了该程序。
2010-10-24 15:07



参与讨论请移步原网站贴子:https://bbs.bccn.net/thread-323830-1-1.html




关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.168227 second(s), 7 queries.
Copyright©2004-2025, BCCN.NET, All Rights Reserved