标题:[全民编程]76道高难度C++练习题.含NOI竞赛题.欢迎挑战
只看楼主
kai
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:52
帖 子:3450
专家分:59
注 册:2004-4-25
得分:0 
关于第三题, 如果仔细观察一下这个图,那么就是每一层的字符都是一样的,这样的话,我们只要实现兜圈子的画法,那么下一层只是一个起点和终点的数据变更. 我们知道了 N*N 的矩形, 那么一共要画几个圈子就知道了, 那就是 (N+1)/2;

listing3.cpp
[CODE]
#include <iostream>
using namespace std;

int main()
{
int N = 15; // to test the situation, you can change the N value;
int x, y;
int i = 0;
char c[N][N];
char b = 'T';

while(i<((N+1)>>1))
{
for(x = i, y = i; x<(N-1-i); x++)
{
if(i == 0)
b = 'T';
else if(i == 1)
b = 'J';
else
{
b = '1' + i - 2;
}
c[x][y] = b;
}
for(x = N - 1 - i, y = i; y<(N-1-i); y++)
{
if(i == 0)
b = 'T';
else if(i == 1)
b = 'J';
else
{
b = '1' + i - 2;
}
c[x][y] = b;
}
for(x = N - 1 - i, y = N - 1 - i; x>=i; x--)
{
if(i == 0)
b = 'T';
else if(i == 1)
b = 'J';
else
{
b = '1' + i - 2;
}
c[x][y] = b;
}
for(x = i, y = N - 1 - i; y>=i; y--)
{
if(i == 0)
b = 'T';
else if(i == 1)
b = 'J';
else
{
b = '1' + i - 2;
}
c[x][y] = b;
}
i++;
}

for(y = 0; y<N; y++)
{
for(x = 0; x<N; x++)
{
cout<<c[x][y];
}
cout<<endl;
}
return 0;
}

[/CODE]

自由,民主,平等,博爱,进步.
中华民国,我的祖国,中华民国万岁!中华民国加油!
本人自愿加入中国国民党,为人的自由性,独立性和平等性而奋斗!
2007-06-24 07:30
HJin
Rank: 6Rank: 6
等 级:贵宾
威 望:27
帖 子:401
专家分:0
注 册:2007-6-9
得分:0 
To Kai:

Kai's post for #3

int N = 15;

should be

const int N = 15;

Otherwise, you need to dynmically alloate the 2d array.


I am working on a system which has no Chinese input. Please don\'t blame me for typing English.
2007-06-24 07:40
HJin
Rank: 6Rank: 6
等 级:贵宾
威 望:27
帖 子:401
专家分:0
注 册:2007-6-9
得分:0 

/*---------------------------------------------------------------------------
File name: C76-19.cpp
Author: HJin
Created on: 6/19/2007 22:53:55

6/20/2007 11:43:57
-----------------------------------------------------------
Add the soln for fractional Knapsack problem and some comments
about the algorithms.


6/19/2007 23:49:34
-----------------------------------------------------------
Add the soln for 0-1 Knapsack problem and move the 2d memory
functions from my namespace directly into this file.


C76-19.cpp --- the cpp source file for solving the 19th of the 76
classical C/C++ problems.

经典 76 道编程题 之 19:

19. (背包问题) 有 N 件物品 d1,......dN,每件物品重量为 W1,..., WN
(Wi > 0), 每件物品价值为 V1,......VN (Vi>0)。用这N件物品的某个子集
填空背包,使得所取物品的总重量<=TOTAL,并设法使得背包中物品的价值尽可
能高。


Analysis:

In English, this is called the Knapsack problem, in which you are helping
a thief to maximize his loot from a store.

There are two versions of this problem: the 0-1 Knapsack problem and the
fractional Knapsack problem. In the 0-1 Knapsack problem, an item is either
taken or discarded --- you cannot take 0.1 part of an item. In the fractional
Knapsack problem, items can be divided into fractions, say, 0.5.

In general, the the 0-1 Knapsack problem can be solved by a dynamic programming
algorithm, whereas the fractional Knapsack problem can be solved by a greedy
algorithm.

The dynamic programming algorithm needs to first establish a table c[0..n, 0..W],
where n is the number of items, W is the max weight the knapscak can hold.
c[i, w] stands for the max-value for i items and w pounds --- we need to find
c[n, W]. By a math analysis:

c[i, w] = 0, if i=0 or w=0
= c[i-1, w], if i>0 and w_i < w
= max(v_i + c[i-1, w-w_i], c[i-1, w]), if i>0 and w_i < w


The greedy algorithm need to first choose the most valuable item ---
the one with highest value per pound, and then the second most valuable,
and so on.

Sample output

~~~~~ Knapsack problem (0-1) ~~~~~
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6
0 0 7 7 7 7 13 13 13 13 13 13 13 13 13 13 13
0 0 7 8 8 15 15 15 15 21 21 21 21 21 21 21 21
0 0 7 8 8 15 15 16 17 21 24 24 24 24 30 30 30
0 0 7 8 11 15 18 19 19 26 26 27 28 32 35 35 35
0 0 7 8 11 15 20 20 27 28 31 35 38 39 39 46 46

The thief's max-profit loot choices are:
(20, 6) (11, 4) (8, 3) (7, 2)
( loot weight / max weight = 15 / 16 )
loot value is 46
loot weight is 15

~~~~~ Knapsack problem (fractional) ~~~~~
1
1
1
1
0.2
0
1 * 7 + 1 * 20 + 1 * 11 + 1 * 8 + 0.2 * 9 = 47.8
Press any key to continue . . .


Note that I used an array of 2 columns to store v_i and w_i's.
The first column is for the values;
The second column is for the weights.
The reason is that I need to sort the items by decreasing values per pound
for a greedy algorithm.


Reference:
0. Cormen, Introduction to algorithms, 2nd ed, MIT press.
1. 野比, 相当经典的76道编程自虐题分享.无答案 at
http://bbs.bc-cn.net/viewthread.php?tid=147853
*/

#include <iostream>

#include <string>
#include <sstream>
#include <iomanip>
#define DIM(x) sizeof( (x) ) / sizeof( (x)[0] )

#define hj_debug

using namespace std;


/**
Dynamic programming algorithm for solving the 0-1 knapsack problem.

Space complexity is Theta( n W).
Time complexity is Theta( n W).
*/
int Knapsack01(int (*a)[2], int n, int W);

/**
trackback the optimal soln --- recursive version.
*/
void TrackBack01_recursive(int (*a)[2], int** c, int i, int w);

/**
trackback the optimal soln --- loop version.
*/
void TrackBack01_loop(int (*a)[2], int** c, int i, int w);


/**
Greedy algorithm for solving the fractional Knapsack problem.
*/
double KnapsackFractional(int (*a)[2], int n, int W, double* x);

/**
Track back the optimal soln.
*/
void TrackBackFractional(int (*a)[2], double* x, int n, double maxValue);


/**
Insertion sort to sort the array by decreasing value. The most value item
is the one which has the largest value per pound.
*/
void sortDecreasing(int (*a)[2], int n);


/**
auxilliary functions for 2d array dynamic allocation and deallocation.
*/
template <typename T>
inline T** new2d(int row, int col);

template <typename T>
inline T** new2dInit(int row, int col);

template <typename T>
inline T** new2dInit2(int row, int col);

template <typename T>
inline void delete2d(T** arr2d, int row);

template <typename T>
inline T max2(const T&a, const T& b);

int main(int argc, char** argv)
{
// test #1
//int a[][2] = {
// {60, 10},
// {100, 20},
// {120, 30},
//};


int a[][2] = {
{6, 4},
{7, 2},
{8, 3},
{9, 5},
{11, 4},
{20, 6},
};
int W = 16;
double x[DIM(a)];

cout<<"\n~~~~~ Knapsack problem (0-1) ~~~~~\n";
Knapsack01(a, DIM(a), W);

cout<<"\n~~~~~ Knapsack problem (fractional) ~~~~~\n";
KnapsackFractional(a, DIM(a), W, x);

return 0;
}

int Knapsack01(int (*a)[2], int n, int W)
{
int** c = new2dInit2<int>(n+1, W+1);
int w;
int i;
int lootValue;

for(i=1; i<=n; ++i)
{
for(w=1; w<=W; ++w)
{
c[i][w] = (a[i-1][1] <= w ?
max2(a[i-1][0] + c[i-1][ w-a[i-1][1] ],
c[i-1][w]) : c[i-1][w]);
}
}
lootValue = c[n][W];

#ifdef hj_debug
for(i=0; i<=n; ++i)
{
for(w=0; w<=W; ++w)
cout<<setw(4)<<c[i][w];
cout<<endl;
}
cout<<endl;
#endif

TrackBack01_loop(a, c, n, W);
//TrackBack01_recursive(a, c, n, W);

delete2d(c, n+1);
return lootValue;
}

void TrackBack01_recursive(int (*a)[2], int** c, int i, int w)
{
if(i==0)
{
cout<<endl;
}
else
{
if(c[i][w] == c[i-1][w] )
{
TrackBack01_recursive(a, c, i-1, w);
}
else
{
cout<<"("<<a[i-1][0]<<", "<<a[i-1][1]<<") ";
TrackBack01_recursive(a, c, i-1, w-a[i-1][1]);
}
}
}

void TrackBack01_loop(int (*a)[2], int** c, int i, int w)
{
ostringstream oss;
int val=0;
int weight = 0;
int maxWeight = w;

while(i>0 && w>0)
{
--i;
if( c[i+1][w] != c[i][w] )
{
val += a[i][0];
weight += a[i][1];

oss<<"("<<a[i][0]<<", "<<a[i][1]<<") ";
w-=a[i][1];
}
}

cout<<"The thief's max-profit loot choices are:\n";
cout<<oss.str()<<endl;
cout<<"( loot weight / max weight = "<<weight<<" / "<<maxWeight<<" )"<<endl;
cout<<"loot value is "<<val<<endl;
cout<<"loot weight is "<<weight<<endl;
}


double KnapsackFractional(int (*a)[2], int n, int W, double* x)
{
double lootValue=0;
int i;

for (i=0; i<n; ++i)
x[i] = 0;
int w = 0;

sortDecreasing(a, n);

i=0;
while (w < W)
{
if ( w + a[i][1] <= W )
{
x[i] = 1; // take whole item i
w += a[i][1];
lootValue += a[i][0];
}
else
{
// take fractional parts of item i
// this is the last time that we can
// add an item to the knapsack.
x[i] = double(W - w) / a[i][1];
w = W;
lootValue += x[i] *a[i][0];
}
++i;
}

for(i=0; i<n; ++i)
cout<<x[i]<<endl;

TrackBackFractional(a, x, n, lootValue);

return lootValue;
}

void TrackBackFractional(int (*a)[2], double* x, int n, double maxValue)
{
int i=0;

for(i=0; i<n-1; ++i)
{
if(x[i] > 0)
{
cout<< x[i] <<" * " << a[i][0];
}
else
break;

if(x[i+1] == 0)
cout<< " = "<<maxValue;
else
cout<<" + ";
}

if(x[n-1] >0)
cout<<x[n-1] << " * "<< a[n-1][0] << " = " << maxValue;

cout<<endl;
}

void sortDecreasing(int (*a)[2], int n)
{
for(int out = 1; out<n; ++out)
{
int in = out;
int v = a[out][0];
int w = a[out][1];

while( in >0 && double(a[in-1][0]) / a[in-1][1] < double(v)/w )
{
a[in][0] = a[in-1][0];
a[in][1] = a[in-1][1];
--in;
}

a[in][0] = v;
a[in][1] = w;
}
}


template <typename T>
T** new2d(int row, int col)
{
T** arr2d = new T*[row];
for(int i=0; i<row; ++i)
arr2d[i] = new T[col];

return arr2d;
}

template <typename T>
T** new2dInit(int row, int col)
{
T** arr2d = new T*[row];
int i;
int j;

for(i=0; i<row; ++i)
arr2d[i] = new T[col];

for(i=0; i<row; ++i)
for(j=0; j<col; ++j)
arr2d[i][j] = T();

return arr2d;
}

template <typename T>
T** new2dInit2(int row, int col)
{
T** arr2d = new T*[row];
int i;
int j;

for(i=0; i<row; ++i)
arr2d[i] = new T[col];

for(i=0; i<row; ++i)
arr2d[i][0] = T();

for(j=0; j<col; ++j)
arr2d[0][j] = T();

return arr2d;
}

template <typename T>
void delete2d(T** arr2d, int row)
{
for(int i=0; i<row; ++i)
delete [] arr2d[i];

delete [] arr2d;
}


template <typename T>
T max2(const T&a, const T& b)
{
return (a>b ? a: b);
}


I am working on a system which has no Chinese input. Please don\'t blame me for typing English.
2007-06-24 08:09
kai
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:52
帖 子:3450
专家分:59
注 册:2004-4-25
得分:0 
HJin,
你的担心是不必要的.
我给你一段演示代码,你自己一看便明白了:
[CODE]
#include <iostream>
using namespace std;

int main(void)
{
int n;
cin>>n;
char c[n];
for(int i = 0; i<n; i++)
{
c[i] = 'a' + i;
cout<<c[i]<<" ";
}
return 0;
}
[/CODE]

由于考虑到这个N 可以由用户来设定所以我没有将这个N设为常量.
还有想说的是,如果你的程序中可以不用动态开辟空间就不要动态开辟空间, 这是从程序的执行效率考虑.

自由,民主,平等,博爱,进步.
中华民国,我的祖国,中华民国万岁!中华民国加油!
本人自愿加入中国国民党,为人的自由性,独立性和平等性而奋斗!
2007-06-24 08:30
kai
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:52
帖 子:3450
专家分:59
注 册:2004-4-25
得分:0 
HJin,
就你的第4题的考虑, 我说一些我的看法:
我对第4题也思考了一下, 方法是用穷举, 但即便是穷举, 书写代码上还是有技巧的, 此外还需要一个自己的计数器, 凭我的直觉, 如果k 很大的话, 那么那个count 将是很大的, 完全有可能超过 2^32 - 1.

自由,民主,平等,博爱,进步.
中华民国,我的祖国,中华民国万岁!中华民国加油!
本人自愿加入中国国民党,为人的自由性,独立性和平等性而奋斗!
2007-06-24 08:47
HJin
Rank: 6Rank: 6
等 级:贵宾
威 望:27
帖 子:401
专家分:0
注 册:2007-6-9
得分:0 

还有想说的是,如果你的程序中可以不用动态开辟空间就不要动态开辟空间, 这是从程序的执行效率考虑.

very good idea. Sometimes, I need to work on very large data set, say, an array of size N = 2^21. Then a[N] has to be dynamically allocated.

[CODE]/*---------------------------------------------------------------------------
File name: stack_vs_heap.cpp
Author: HJin
Created on: 6/23/2007 17:47:16
Modification history:
*/
#include <iostream>
using namespace std;
int main(int argc, char** argv)
{
const int N = (1<<20);

// does not work since N is too big for a[N] to be on the program stack
// int a[N];
// Okay --- as long as your heap memory is large enough.
int * b = new int [N];
return 0;
}[/CODE]



I am working on a system which has no Chinese input. Please don\'t blame me for typing English.
2007-06-24 08:51
HJin
Rank: 6Rank: 6
等 级:贵宾
威 望:27
帖 子:401
专家分:0
注 册:2007-6-9
得分:0 
回复:(kai)HJin,就你的第4题的考虑, 我说一些我的看...
very good observations. As I mentioned in my original post, enumeration (or brute force) approach is applicable only for n<=6. In fact, n=6 takes too long on my PC to output result.

For n = 7, the number of different Latin squares overflows 32-bit integers.

Yes, there is a lot of places in my code that can be optimized.

I am working on a system which has no Chinese input. Please don\'t blame me for typing English.
2007-06-24 09:03
kai
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:52
帖 子:3450
专家分:59
注 册:2004-4-25
得分:0 
HJin,
哈哈, 看来你没有找到合适的方法, 你也没有理解我的关于程序的书写技巧的那句话. 我现在只想告诉你, 不要把没有必要的中间状态带入下一层, 这便是节约内存的根本. 代码我还没有写, 但是凭我的直觉, 这道题如果思考方式不对, 那么是没有可能给出结果的.

我的算法不敢说对任意大的数都有效, 但是k 取个几十, 几百还是可以解的. 由于题目要求输出排列方案, 这自然要影响程序的执行时间, 不过这不会扩展对内存的需要.

自由,民主,平等,博爱,进步.
中华民国,我的祖国,中华民国万岁!中华民国加油!
本人自愿加入中国国民党,为人的自由性,独立性和平等性而奋斗!
2007-06-24 09:19
aipb2007
Rank: 8Rank: 8
来 自:CQU
等 级:贵宾
威 望:40
帖 子:2879
专家分:7
注 册:2007-3-18
得分:0 
以下是引用kai在2007-6-24 8:30:26的发言:
HJin,
你的担心是不必要的.
我给你一段演示代码,你自己一看便明白了:
[CODE]
#include <iostream>
using namespace std;

int main(void)
{
int n;
cin>>n;
char c[n];
for(int i = 0; i<n; i++)
{
c[i] = 'a' + i;
cout<<c[i]<<" ";
}
return 0;
}
[/CODE]

由于考虑到这个N 可以由用户来设定所以我没有将这个N设为常量.
还有想说的是,如果你的程序中可以不用动态开辟空间就不要动态开辟空间, 这是从程序的执行效率考虑.

这里数组的大小不是必须要在编译时为常量吗?kai,你这样可以吗?


Fight  to win  or  die...
2007-06-24 09:59
kai
Rank: 16Rank: 16Rank: 16Rank: 16
等 级:版主
威 望:52
帖 子:3450
专家分:59
注 册:2004-4-25
得分:0 
aipb2007,
你何必问我呢? 你为什么不自己试一下呢? 我既然把代码给出了, 想必不会是假的, 你说是不是?

自由,民主,平等,博爱,进步.
中华民国,我的祖国,中华民国万岁!中华民国加油!
本人自愿加入中国国民党,为人的自由性,独立性和平等性而奋斗!
2007-06-24 10:22



参与讨论请移步原网站贴子:https://bbs.bccn.net/thread-147967-1-1.html




关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 0.351380 second(s), 7 queries.
Copyright©2004-2025, BCCN.NET, All Rights Reserved