已知10个城市坐标求从任意一个指定城市出发遍历的最短路径(最后回到起点)。
虽然知道用Dijkstra或者Floyd可是不会写代码。求救
#include<stdio.h> #include<stdlib.h> #define maxint 32767 typedef struct { char vex[100]; int a[100][100]; }map; typedef enum{FALSE,TRUE} boolean; int d1[100], p1[100]; int d[100][100], p[100][100]; void dijk(map &g, int v1, int n) //迪杰斯特算法 { int d[100], p[100]; boolean s[100]; int v, i, w, min; for (v = 1; v <= n; v++) //初始化 { s[v] = FALSE; d[v] = g.a[v1][v]; if (d[v] < maxint) p[v] = v1; //v1是v的前趋 else p[v] = 0; //v无前趋 } d[v1] = 0; s[v1] = TRUE; for (i = 2; i < n; i++) //n-1个顶点 { min = maxint; for (w = 1; w <= n; w++) if (!s[w] && d[w] < min) { v = w; min = d[w]; } s[v] = TRUE; for (w = 1; w <= n; w++) if (!s[w] && (d[v] + g.a[v][w] < d[w])) { d[w] = d[v] + g.a[v][w]; p[w] = v; } } printf("路径长度 路径\n"); for (i = 1; i <= n; i++) { printf("%5d", d[i]); printf("%5d", i); v = p[i]; while (v != 0) { printf("<--%d", v); v = p[v]; } printf("\n"); } } void floyd(map g, int n) { for (int i = 1; i <= n; i++) //设置路径长度d初值 for (int j = 1; j <= n; j++) { if (g.a[i][j] != maxint) p[i][j] = j; else p[i][j] = 0; d[i][j] = g.a[i][j]; } for (int k = 1; k <= n; k++) { for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { if (d[i][k] + d[k][j] < d[i][j]) { d[i][j] = d[i][k] + d[k][j]; //修改长度 p[i][j] = p[i][k]; } } } } void createmap(map &g, int n, int e) { int i, j, k, w; for (i = 1; i <= n; i++) g.vex[i] = (char)i; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) g.a[i][j] = maxint; printf("输入%d条边的i、j、w:\n",e); for (k = 1; k <= e; k++) { scanf_s("%d%d%d", &i,&j,&w); g.a[i][j] = w; } printf("建立完毕\n"); } void main() { map g; int n, e, v, w, k; int flag = 1; printf("输入图中顶点个数和边数n,e:"); scanf_s("%d%d", &n, &e); createmap(g, n, e); while (flag!=0) { printf("**********求城市最短路径**********\n"); printf("1、求一个城市到所有城市的最短路径\n"); printf("2、求任意的两个城市之间的最短路径\n"); printf("0、退出\n"); scanf_s("%d", &flag); if (flag == 1) { printf("求单源路径,输入源点v:"); scanf_s("%d", &v); dijk(g, v, n); //调用迪杰斯特算法 printf("\n\n"); } else if (flag == 2) { floyd(g, n); //调用弗洛伊德算法 printf("输入源点v和终点w:"); scanf_s("%d%d", &v, &w); k = p[v][w]; //k为起点v的后继算法 if (k == 0) printf("顶点%d到%d无路径!\n", v, w); else { printf("顶点%d到%d的最短路径是: %d", v, w, v); while (k != w) { printf("-->%d", k); //输出后继顶点 k = p[k][w]; } printf("-->%d", w); //终点 printf("\n路径长度:%d\n", d[v][w]); printf("\n\n"); } } else printf("已选择退出\n"); } }