用高斯消元法求解方程组AX=B,其中A为n×n阶方阵,X为n阶列向量是n个未知数,B为n阶列向量。
for i=1 to n
t=a(i,i)
for j=1 to n
a(i,j)=a(i,j)/t
endfor
b(i)=b(i)/t
for k=1 to n
if k#i
t=a(k,i)
for j=1 to n
a(k,j)=a(k,j)-a(i,j)*t
endfor
b(k)=b(k)-b(i)*t
endif
endfor
endfor
n=3
dimension a(n,n),b(n)
a(1,1)=2
a(1,2)=4
a(1,3)=3
a(2,1)=4
a(2,2)=5
a(2,3)=6
a(3,1)=7
a(3,2)=8
a(3,3)=9
b(1)=19
b(2)=32
b(3)=50
for i=1 to n
?
for j=1 to n
??a(i,j)
endfor
??b(i)
endfor
*----本处放那段代码
for i=1 to n
?
for j=1 to n
??a(i,j)
endfor
??b(i)
endfor
return