标题:求实现快速傅立叶变换的程序
只看楼主
darice1234
Rank: 1
等 级:新手上路
帖 子:57
专家分:0
注 册:2007-7-30
 问题点数:0 回复次数:4 
求实现快速傅立叶变换的程序
有个程序需要快速傅立叶变换,各位大哥帮帮忙啊
搜索更多相关主题的帖子: 傅立叶 
2008-04-20 16:37
moonwalker
Rank: 1
等 级:新手上路
威 望:1
帖 子:909
专家分:2
注 册:2007-3-2
得分:0 
貌似是高数里的
不过愧对祖师老人家
工作两年,早把傅里叶变换公式忘干净了

“视频教程网”免费提供教学资源
C不限制你的自由!
条件是自己承担滥用自由的恶果!
2008-04-20 16:48
hoodlum1980
Rank: 2
来 自:浙江大学
等 级:论坛游民
威 望:2
帖 子:289
专家分:23
注 册:2008-2-24
得分:0 
这好像不是我写的代码。应该是我下载的。

用法:
// 函数名: 快速傅立叶变换(来源《C常用算法集》)
// 本函数测试OK,可以在TC2.0,VC++6.0,Keil C51测试通过。
// 如果你的MCS51系统有足够的RAM时,可以验证一下用单片机处理FFT有多么的慢。
//
// 入口参数:
// l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换
// il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角
// n: 输入的点数,为偶数,一般为32,64,128,...,1024等
// k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数
// pr[]: l=0时,存放N点采样数据的实部
// l=1时, 存放傅立叶变换的N个实部
// pi[]: l=0时,存放N点采样数据的虚部
// l=1时, 存放傅立叶变换的N个虚部
//
// 出口参数:
// fr[]: l=0, 返回傅立叶变换的实部
// l=1, 返回逆傅立叶变换的实部
// fi[]: l=0, 返回傅立叶变换的虚部
// l=1, 返回逆傅立叶变换的虚部
// pr[]: il = 1,i = 0 时,返回傅立叶变换的模
// il = 1,i = 1 时,返回逆傅立叶变换的模
// pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角
// il = 1,i = 1 时,返回逆傅立叶变换的辐角
// data: 2005.8.15,Mend Xin Dong

程序代码:
#include <math.h>
#include <stdio.h>

#define N 8

void kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il);
void main()
{
    double xr[N],xi[N],Yr[N],Yi[N],l=0,il=0;
    int i,j,n=N,k=3;
    for(i=0;i<N;i++)
    {
        xr[i]=i;
        xi[i]=0;
    }
    printf("------FFT------\n");
    l=0;
    kkfft(xr,xi,n,k,Yr,Yi,l,il);
    for(i=0;i<N;i++)
    {
        printf("%-11lf + j* %-11lf\n",Yr[i],Yi[i]);
    }

    printf("-----DFFT-------\n");
    l=1;
    kkfft(Yr,Yi,n,k,xr,xi,l,il);
    for(i=0;i<N;i++)
    {
        printf("%-11lf + j* %-11lf\n",xr[i],xi[i]);
    }
    getch();
}


void kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il)
{
    int it,m,is,i,j,nv,l0;
    double p,q,s,vr,vi,poddr,poddi;
    for (it=0; it<=n-1; it++)
    {
      m = it;
       is = 0;
       for(i=0; i<=k-1; i++)
       {
        j = m/2;
        is = 2*is+(m-2*j);
        m = j;
       }
       fr[it] = pr[is];
       fi[it] = pi[is];
    }


    pr[0] = 1.0; 
    pi[0] = 0.0;
    p = 6.283185306/(1.0*n);
    pr[1] = cos(p); 
    pi[1] = -sin(p);

    if (l!=0) 
  pi[1]=-pi[1];

    for (i=2; i<=n-1; i++)
    { 
       p = pr[i-1]*pr[1]; 
       q = pi[i-1]*pi[1];
       s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]);
       pr[i] = p-q; 
      pi[i] = s-p-q;
    }

    for (it=0; it<=n-2; it=it+2)
    { 
      vr = fr[it]; 
       vi = fi[it];
       fr[it] = vr+fr[it+1]; 
       fi[it] = vi+fi[it+1];
       fr[it+1] = vr-fr[it+1]; 
       fi[it+1] = vi-fi[it+1];
    }
    m = n/2; 
    nv = 2;

    for (l0=k-2; l0>=0; l0--)
    { 
      m = m/2; 
       nv = 2*nv;
       for(it=0; it<=(m-1)*nv; it=it+nv)
        for (j=0; j<=(nv/2)-1; j++)
        { 
             p = pr[m*j]*fr[it+j+nv/2];
             q = pi[m*j]*fi[it+j+nv/2];
             s = pr[m*j]+pi[m*j];
             s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]);
             poddr = p-q; 
             poddi = s-p-q;
             fr[it+j+nv/2] = fr[it+j]-poddr;
             fi[it+j+nv/2] = fi[it+j]-poddi;
             fr[it+j] = fr[it+j]+poddr;
             fi[it+j] = fi[it+j]+poddi;
        }
    }

    /*逆傅立叶变换*/
    if(l!=0)
    {
      for(i=0; i<=n-1; i++)
       { 
        fr[i] = fr[i]/(1.0*n);
        fi[i] = fi[i]/(1.0*n);
       }
    } 
    
    /*是否计算模和相角*/
    if(il!=0)
    {
       for(i=0; i<=n-1; i++)
       { 
        pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]);
        if(fabs(fr[i])<0.000001*fabs(fi[i]))
        { 
             if ((fi[i]*fr[i])>0) 
              pi[i] = 90.0;
             else 
              pi[i] = -90.0;
        }
        else
         pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306;
       }
    }
    return;
} 



[[it] 本帖最后由 hoodlum1980 于 2008-4-22 14:27 编辑 [/it]]
2008-04-22 14:24
雨中飛燕
Rank: 1
等 级:新手上路
帖 子:765
专家分:0
注 册:2007-10-13
得分:0 
[font=Courier New]
#include <math.h>
#include <stdio.h>

#define N 8

void kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il);
void main()
{
    double xr[N],xi[N],Yr[N],Yi[N],l=0,il=0;
    int i,j,n=N,k=3;
    for(i=0;i<N;i++)
    {
        xr[i]=i;
        xi[i]=0;
    }
    printf("------FFT------\n");
    l=0;
    kkfft(xr,xi,n,k,Yr,Yi,l,il);
    for(i=0;i<N;i++)
    {
        printf("%-11lf + j* %-11lf\n",Yr[i],Yi[i]);
    }

    printf("-----DFFT-------\n");
    l=1;
    kkfft(Yr,Yi,n,k,xr,xi,l,il);
    for(i=0;i<N;i++)
    {
        printf("%-11lf + j* %-11lf\n",xr[i],xi[i]);
    }
    getch();
}


void kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il)
{
    int it,m,is,i,j,nv,l0;
    double p,q,s,vr,vi,poddr,poddi;
    for (it=0; it<=n-1; it++)
    {
      m = it;
       is = 0;
       for(i=0; i<=k-1; i++)
       {
        j = m/2;
        is = 2*is+(m-2*j);
        m = j;
       }
       fr[[it][/it]it] = pr[is];
       fi[[it][/it]it] = pi[is];
    }


    pr[0] = 1.0;
    pi[0] = 0.0;
    p = 6.283185306/(1.0*n);
    pr[1] = cos(p);
    pi[1] = -sin(p);

    if (l!=0)
  pi[1]=-pi[1];

    for (i=2; i<=n-1; i++)
    {
       p = pr[i-1]*pr[1];
       q = pi[i-1]*pi[1];
       s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]);
       pr[i] = p-q;
      pi[i] = s-p-q;
    }

    for (it=0; it<=n-2; it=it+2)
    {
      vr = fr[[it][/it]it];
       vi = fi[[it][/it]it];
       fr[[it][/it]it] = vr+fr[it+1];
       fi[[it][/it]it] = vi+fi[it+1];
       fr[it+1] = vr-fr[it+1];
       fi[it+1] = vi-fi[it+1];
    }
    m = n/2;
    nv = 2;

    for (l0=k-2; l0>=0; l0--)
    {
      m = m/2;
       nv = 2*nv;
       for(it=0; it<=(m-1)*nv; it=it+nv)
        for (j=0; j<=(nv/2)-1; j++)
        {
             p = pr[m*j]*fr[it+j+nv/2];
             q = pi[m*j]*fi[it+j+nv/2];
             s = pr[m*j]+pi[m*j];
             s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]);
             poddr = p-q;
             poddi = s-p-q;
             fr[it+j+nv/2] = fr[it+j]-poddr;
             fi[it+j+nv/2] = fi[it+j]-poddi;
             fr[it+j] = fr[it+j]+poddr;
             fi[it+j] = fi[it+j]+poddi;
        }
    }

    /*逆傅立叶变换*/
    if(l!=0)
    {
      for(i=0; i<=n-1; i++)
       {
        fr[i] = fr[i]/(1.0*n);
        fi[i] = fi[i]/(1.0*n);
       }
    }
   
    /*是否计算模和相角*/
    if(il!=0)
    {
       for(i=0; i<=n-1; i++)
       {
        pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]);
        if(fabs(fr[i])<0.000001*fabs(fi[i]))
        {
             if ((fi[i]*fr[i])>0)
              pi[i] = 90.0;
             else
              pi[i] = -90.0;
        }
        else
         pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306;
       }
    }
    return;
}
[/color]


TC的代码??

" border="0" />[color=white]

[[it] 本帖最后由 雨中飛燕 于 2008-4-22 15:12 编辑 [/it]]
2008-04-22 14:27
darice1234
Rank: 1
等 级:新手上路
帖 子:57
专家分:0
注 册:2007-7-30
得分:0 
谢谢大家的帮助!

2008-05-19 16:09



参与讨论请移步原网站贴子:https://bbs.bccn.net/thread-210075-1-1.html




关于我们 | 广告合作 | 编程中国 | 清除Cookies | TOP | 手机版

编程中国 版权所有,并保留所有权利。
Powered by Discuz, Processed in 1.158138 second(s), 8 queries.
Copyright©2004-2024, BCCN.NET, All Rights Reserved